4 research outputs found

    The mechanical behavior of cross-rolled beryllium sheet

    Get PDF
    In response to the failure of a conical section of the Insat C satellite during certification testing, the use of beryllium for payload structures, particularly in sheet product form, is being reevaluated. A test program was initiated to study the tensile, shear, and out-of-plane failure modes of beryllium cross-rolled sheet and to apply data to the development of an appropriate failure criterion. Tensile test results indicated that sanding the surface of beryllium sheet has no significant effect on yield strength but can produce a profound reduction in ultimate strength and results obtained by finite element analysis. Critical examination of these test results may contribute to the modification of a JSC policy for the use of beryllium in orbiter and payload structures

    Preliminary assessment of industrial needs for an advanced ocean technology

    Get PDF
    A quick-look review of selected ocean industries is presented for the purpose of providing NASA OSTA with an assessment of technology needs and market potential. The size and growth potential, needs and problem areas, technology presently used and its suppliers, are given for industries involved in deep ocean mining, petrochemicals ocean energy conversion. Supporting services such as ocean bottom surveying; underwater transportation, data collection, and work systems; and inspection and diving services are included. Examples of key problem areas that are amenable to advanced technology solutions are included. Major companies are listed

    Analysis of Microcrafters in Materials Specimens after Long-Term Exposure on ISS Surface

    Get PDF
    The "Komplast" experiment has been carried out on the ISS by the Khrunichev Space Center jointly with other Russian scientific centers since 1998. The experiment incorporates the "Komplast" cartridges on the FGB exterior, which are fitted with materials specimens and sensors. The cartridges were sent into orbit together with FGB on 20 November 1998. In March 2011, two of the cartridges were taken back from the ISS by the "Discovery" American space shuttle after being exposed in the open space for 12 years. In the framework of this experiment the subject of analysis is the effect of the space environment on the exposed specimens of various materials. This report covers the analysis results of the surface morphology of various materials taken from the "Komplast" cartridges exposed to hits of micrometeors and micronic particles of space debris. Analysis is made of microcraters of 5 to 250 mcm in specimens of polished metals and silicone comprised in the sensor for micrometeoric particles. The report represents optic and scanning electron microscope images of craters formed in the specimens by high-velocity and low-velocity particles impacting the surface. By virtue of the electronic microscope, data on composition of the substance in the craters and of the substance of the low-velocity particles are obtained. The data make it possible to differentiate the particles as the natural-origin particles or anthropogenic-origin space debris particles. Distribution of craters and low-velocity particles in the size range of 5 to 50 mcm is obtained. The data are compared with the existing models of fluxes of natural-origin and artificial-origin microparticles on the ISS orbit. Inhomogeneous particles of complicated configuration are discovered on the surface of the analyzed specimens, whose origin are not uniquely determined and are to be the subject of further study

    A Study of Micro Craters in Material Samples after Long Duration Exposure on ISS Komplast Panels

    Get PDF
    The Komplast materials experiment was designed by the Khrunichev State Research and Production Space Center, together with other Russian scientific institutes, and has been carried out by Mission Control Moscow since 1998. Komplast panels fitted with material samples and sensors were located on the International Space Station (ISS) Functional Cargo Block (FGB) module exterior surface. Within the framework of this experiment, the purpose was to study the effect of the low earth orbit (LEO) environment on exposed samples of various materials. The panels were sent into orbit with the FGB when it launched on November 20, 1998.
    corecore